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The effect of excluded volume (EV) and hydrodynamic interaction (HI) on a dilute solution of flexible 
polymer chains situated in a shear field has been studied by means of a Brownian dynamics simulation. The 
polymer was modelled as a Gaussian chain, accounting for the excluded volume effect by means of an 
exponentially decaying repulsive potential. The hydrodynamic interaction was included by means of the 
Rotne-Prager Yamakawa tensor. The parameters studied were the mean square radius of gyration, the 
intrinsic viscosity, and the differential polarizability and extinction angle that are parameters relevant in flow 
birefringence studies. The EV-effect is seen to be most important at low shear rate. This is followed by an 
intermediate region where EV falls off and HI still has considerable effect, ending up with a chain that is so 
stretched out that neither EV nor HI has influence on conformational or hydrodynamical properties, giving 
parameter values in accordance with theory for the no-EV, no-HI case. Copyright © 1996 Elsevier Science 
Ltd. 

I N T R O D U C T I O N  

The excluded volume effect, that is the increase in chain 
dimensions due to short-range repulsion between differ- 
ent parts of  a flexible chain, has been studied mainly at 
equilibrium conditions or in weak flows. Theoretical 
work I and computer  simulations 2 4 have given informa- 
tion about  the expansion of  Gaussian chains in a 
situation where flow is not present. However, if a 
solution of  flexible chains is situated for instance in a 
shear field, the chain will expand due to the friction 
forces between the chain segments and the surrounding 
solution, and this will in turn influence the excluded 
volume forces, since these depend on the distances 
between the different parts of  the chain. 

When a Gaussian chain is introduced into a shear 
field, the chain will experience an expansion which 
is theoretically given by the expressionS: 
(S 2) = (S02)[1 + (16/945)NaA2g2], where AH is a con- 
stant and g is the shear rate. (S 2) is the equilibrium 
square radius of  gyration. In this formula neither 
hydrodynamic interaction nor excluded volume have 
been taken into account. The increase in (S 2) is caused 
by the flow field only. Thus, according to this equation, 
when hydrodynamic interaction and excluded volume 

* T o  w h o m  c o r r e s p o n d e n c e  s h o u l d  be a d d r e s s e d  

are disregarded, the square radius of  gyration will 
depend on the shear rate to the second power, and on 
the number  of  beads in the chain (N) to the fourth power. 
L6pez Cascales et al. 6 have made a study on the shear 
rate dependence of  ($2), considering also the case with 
hydrodynamic interaction. However, to our knowledge 
no studies have been made upon the relation between 
(S 2) and N or g when both hydrodynamic interaction 
and excluded volume are taken into account. 

We wanted in this work to make a qualitative study of 
the influence of  the excluded volume effect on the 
behaviour of  a dilute solution of flexible polymer 
chains in shear flow, examining, apart  f rom the radius 
of  gyration, the intrinsic viscosity and flow birefringence 
parameters.  

T H E O R Y  A N D  M O D E L S  

Polymer model 
The polymer chain was modelled as a Gaussian bead- 

spring chain in which the behaviour of  the springs is 
Hookean  with potential energy V = Hq2/2. The spring 
constant H equals 3kT/b 2 and q is the instantaneous 
spring length. The parameter  b is the root mean square 
spring length. A chain consists of  N beads and ( N -  1) 
springs. Each bead will experience a friction with respect 
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to the surrounding medium reflected by the friction 
coefficient ~ = 6~rq~0", where q~ is the solvent viscosity 
and 0" is the hydrodynamic radius of  the bead, taken to 
be 2 0" = 0.256b. In the simulations N has been equal to 
20, apart  f rom in the scaling law studies, where N has 
taken values from 6 to 37. 

Excluded volume 
To the model outlined above we have added repulsive 

interactions between non-neighboring units as a way to 
introduce the excluded volume effect. The interaction 
potential has the form 

= f A e  ~,R~,, Rij~<r~ vdRu) (I) 
L O, Ri i > re 

where R 9. is the interbead distance, A is a constant for the 
potential strength, a is a parameter  defining the potential 
sharpness, and r~ is a cut-off distance for the excluded 
volume interaction. 

With a proper value for a,  this is a relatively soft 
potential, similar to the repulsive component  of some 
typical intermolecular potentials for small molecules. 
This potential has the advantage that the time step in the 
Brownian dynamics simulations can be maintained at the 
same value as without the excluded volume effect. When 
sharper potentials are used, such as the Lennard Jones, 
it may be necessary to reduce the time step by a factor of  
100 to get correct results, with a corresponding 
unpleasant increase in computer  time. The applicability 
of  this soft potential has been tested in equilibrium 
conditions by Rey et al. 3, and they established values for 
the parameters A, a and r~ in equation (1) as: A = 75.0, 

= 4 and r~ = 0.512 (in dimensionless form, see below), 
which are the parameter  values that we will use in our 
study. 

In the simulations, the hydrodynamic interaction 
between beads in the chain has been included by means 
of the R o t n e - P r a g e r - Y a m a k a w a  tensor 7. 

Simulation method 
Trajectories in space for the bead-spring chains were 

obtained by means of the Brownian dynamics simulation 
technique and averages over the trajectory (after steady 
state had been reached) were used to calculate values 
for the parameters of  interest (($2), {R2), etc.). The BD- 
algorithm used was that of  Ermak and McCammon  s, 
including a second-order modification by Iniesta and 
Garcia de la Torre 9. In the simulations dimension- 
less parameters were used. Lengths were divided by b, 
forces by kT/b ,  and time by ~b /kT .  Other dimension- 
less quantities follow from these definitions. The relation 
between the shear rate, denoted g, and its dimension- 

. * ' " - * 2 less version, g , is m this scheme: g = (67rq~0.b /kT)g,  
and the dimensionless form of the parameters (S-) and 

2 *  2 *  {R ~) were denoted {S)  and ( R )  , respectively. The 
trajectory of each molecule was simulated starting from 
a generated random conformation,  and the time step 
(in dimensionless units) was At* = 0.01. Each trajectory 
consisted of 1 × 1 0  6 steps, and the first 10 s steps were 
usually rejected because this represents a transition 
period before steady-state is reached. More 
detailed information on the simulation procedure can 
be found in the article by L6pez Cascales and Garcia de 
la Torre 1°. 

hTtrinsic l'iscosity 
The viscosity in simple shear v~. = gy, v). = u- = 0, is 

given by ~/= "r,,,./g, where 7,.). is the stress, i f  we then use 
the expression for the strain tensor given by Bird et al. 11 
we obtain a formula for calculating the intrinsic viscosity 
at shear rate g 

['q] = Z uA(oi.,-~v) (2) 
. ~lsgM l 

where N A is Avogadro 's  number, Qjx is the projection 
onto the x-axis of  the connector between bead j and 
j + 1, ~:,. is the spring force in direction y on bead j ,  and 
M is the molecular weight. The dimensionless form of 
this equation (used in the simulations) is 

671"O" ~ , , 

[q]*-  ~ ~__~<Qi,.Fi,.> (3) 

Flow bireJHngenee 
When a polymer solution is subjected to flow, 

birefringence may result due to the orientation of chain 
segments that have different polarizability along and 
perpendicular to the segment. Flow birefringence is a 
sensitive experimental tool for measuring conforma- 
tional properties, and the two parameters of  interest are 
the differential polarizability, AF, and the extinction 
angle, X. The differential polarizability (along the 
principal axes of  the polarizability tensor) is given by 12 

AF = 3C[((x 'Ax) - (yTAy))2 + 4{xTAy)2] '/2 (4) 

where C is a system constant, x, y the N-dimensional 
vectors containing the coordinates of  the beads in the 
chain and A is a transformation matrix. The extinction 
angle can be found from 12 

2(xTAy) 
tan 2~ (xXAx) _ (yTAy) (5) 

I f  we instead of AF make use of  its reduced version 
AF = AF/3Cb  2, the two expressions above are suitable 
for calculating these two parameters in a computer  
simulation, and we will use them to look at the influence 
of EV on flow birefringence. 

RESULTS A N D  DISCUSSION 

According to theory 11 , the square radius of gyration for a 
Gaussian chain without excluded volume at equilibrium 
is: (S~)=  b2(N 2 -  1)/6N. A log- log plot of  (So) vs 
(N 2 - 1)/N will thus have an exponent equal to 1. The 
same is the case when (R 2) is plotted versus (N - 1), since 
the equilibrium expression for this parameter  is 
(R 2) = ( N -  1)b 2. However, when excluded volume is 
introduced, the chain will expand, and according to 
Renormalization Group Theory j the exponent (named 
2u) will take the value I. 176. As a test of  the simulation 
routine and the applied excluded volume potential, we 
started our simulations with a study of Gaussian chains 
at equilibrium, to check the exponents obtained against 
the value mentioned above. 

Figures la and b show the results of  simulations with 
Gaussian chains at equilibrium, i.e. no shear field, and 
with excluded volume and hydrodynamic interaction 
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Figure 1 , (a) Mean square radius of gyration (in dimensionless form) 
v e r s u s  ( N "  - 1 ) / N  (where N is number of beads) for Gaussian chains at 
equilibrium (log-log plot). The effects of excluded volume (EV) and 
hydrodynamic interaction (HI) were included in the simulation. (b) 
Mean square end-end distance (in dimensionless form) v e r s u s  ( N  - 1) 
for Gaussian chains at equilibrium (log-log plot). The effects of 
excluded volume (EV) and hydrodynamic interaction (HI) were 
included in the simulation 

effects included. The values of  the dimensionless mean 
2 * square radius of  gyration, ( S )  , and the dimensionless 

mean square end-end  distance, (R2) *, a re  plotted versus 
(N 2 - 1) IN and N - 1, respectively. In this simulation 
we have used a range of  different N-values (from 6 to 37 
beads in the chain). As explained above, theoretical 
predictions for the scaling relationship between ($2) * 
and (N 2 - 1 ) /N  and between (R2) * and N -  1 give an 
exponent equal to 1.176. F rom our simulations we 
obtain the exponents 1.173 + 0.008 and 1.172 + 0.008, 
respectively, a result that is taken as a confirmation of  
the validity of  the applied excluded volume potential and 
the simulation algorithm. 

In Figure 2a is shown in a log log plot our simulation 
results for ($2) * for a 20-bead Gaussian chain versus 
dimensionless shear rate. For  comparison,  apart  f rom 
the EV-HI case, the results for the cases without 
hydrodynamic interaction (no-HI) and without excluded 
volume (no-EV) are also shown in this figure. It is seen 
how the behaviour as a function of the shear rate can be 
divided into two separate regimes, one at low shear rates 
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Figure 2 (a) Mean square radius of gyration (in dimensionless form) 
v e r s u s  dimensionless shear rate for a 20-bead Gaussian chain. Four 
cases are shown: without excluded volume (EV) and without 
hydrodynamic interaction (no-EV, no-HI); with EV and without HI 
(EV, no-HI); without EV and with HI (no-EV, HI); with EV and with 
HI (EV, HI). (b) Relative mean square radius of gyration v e r s u s  

dimensionless shear rate for a 20-bead Gaussian chain. The curves 
marked EV, HI and no-EV, HI are the simulation results for these cases 
divided by results from the no-EV, no-HI case 

(g* up to approx. 0.1) w h e r e  (82) * is nearly constant, and 
one at higher shear rates, where the value of  (S 2.) 
increases drastically with the shear rate. Since in Figure 
2a the no-HI  and HI  curves at low shear rates lie much 
closer than the no-EV and EV curves, it is seen that the 
EV effect is more important  than the HI  effect in this 
regime. In the transition region from g* = 0.1 to around 
1.0, the EV effect is seen to disappear (no distinction 
between no-EV and EV curves), and only the effect of  HI  
remains. This is reasonable since the effect of  EV is 
important  only when the beads are situated very close to 
each other, thus reducing its importance at high shear. 
The influence of HI  finally disappears around g* = 10. 
Above this shear rate, the mean square radius of  gyration 
is found to vary with the second power of  the shear rate, 
in accordance with theoretical predictions 13 and earlier 
simulation results 14. The large extension that is seen for 
high values of  the shear rate is unrealistic for a real 
polymer chain since this will have a finite limit to the 
extension governed by its contour  length, and will break 
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if the force on the polymer is sufficiently high. 
However, the simulation results for high shear are 
interesting for comparison with theory and for 
illustration of  the shear rate dependence of the EV and 
HI  effects. 

In Figure 2b is seen how the relationship ($2)/(So) 
(where (S0) refers to the no-EV, no-HI  case) varies with 
the shear rate for the cases with and without EV. In the 
EV-HI case, from a starting value above 1, ($2)/{S 2) 
passes through a minimum and finally reaches the value 
1, corresponding to the case of  negligible influence of 
EV and HI.  The expansion of  the chain at low shear due 
to EV, represented by the value ($2), is found to be 
approximately 50%. The drop in the ratio ($2)/(So> at 
intermediate shear rates, i.e. the observed relative 
compression of the molecule, is due to the following. 
At low shear rates, when the chain molecule has a rather 
compact  form, the EV effect dominates and the molecule 
is expanded compared to the situation where this effect is 
not taken into account (phantom chain). However, when 
the shear rate is increased, the EV effect starts to 
diminish and the influence of HI  starts to be comparable 
with EV. Since the effect of  HI  on the polymer chain 
always is that of  a reduction in chain dimensions, a fact 
that also can be seen in Figure 2a, the ratio <32>/<30) will 
start to fall. It will reach a minimum when the EV effect 
has almost disappeared, but the HI  effect still is 
significant. F rom Figure 2b this is found to take place 
around g* = 1, with a minimum of  approximately 0.4. 

Figure 3 shows our simulation results for the 
dimensionless intrinsic viscosity of  the polymer chains 
versus dimensionless shear rate in a log log plot. Three 
cases are shown; (a) only HI  included, (b) only EV 
included, and (c) both EV and HI included. We can see 
that the inclusion of one or both of these effects results in 
a shear-dependent intrinsic viscosity, an observation 
made also in other works l°Jh. I f  only HI  (and not EV) is 
taken into account, a significant shear-thickening beha- 
viour is observed, whereas if only EV is considered, we 
see a clear shear-thinning behaviour. The latter result is 
explained by the fact that the intrinsic viscosity is directly 
related to the chain dimensions, which contribution from 
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Figure 3 Intrinsic viscosity versus dimensionless shear rate for a 20- 
bead Gaussian chain. Three cases are shown: with EV and without HI 
(EV, no-HI); without EV and with HI (no-EV, HI); with EV and with 
HI (EV, HI) 

EV diminishes as the EV-effect is reduced with increasing 
shear rate. The shear-thickening behaviour found with 
HI  is explained by the fact that since HI  reduces the chain 
dimensions, this will lower the value of the intrinsic 
viscosity, but this effect will disappear as HI  is reduced 
with increasing shear rate. At high shear rates the curves 
converge to the no-EV, no-HI  value, similar to what was 
found for ($2) *. When both EV and HI are included, a 
situation that should be closer to that of  a real system, we 
obtain a small lowering in the intrinsic viscosity at the 
start, followed by a shear-thickening region. The first 
part is similar to what is observed experimentally for 
flexible chains, whereas the final increase in viscosity is a 
non-real feature, a result that illustrates the well known 
fact that the Gaussian model is not realistic at very high 
shear rates. 

In Figures 4a and b are shown our simulation results 
for the value of the birefringence of the sample of  
polymer chains versus dimensionless shear rate in log 
log plots. Figure 4a shows the effect of  EV on the 
differential polarizability AF I. The influence of  excluded 
volume is greatest for small values of  the shear rate, as 
mentioned in connection with the parameters discussed 
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Figure 4 (a) Differential polarizability in reduced form, AF', v e r s u s  

dimensionless shear rate for a 20-bead Gaussian chain. Two cases are 
shown: without EV and with HI (no-EV, HI); with EV and with HI 
(EV, HI). (b) Extinction angle, tan2;k, v e r s u s  dimensionless shear rate 
for a 20-bead Gaussian chain. Two cases are shown: without EV and 
with HI (no-EV, HI); with EV and with HI (EV, HI) 
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earlier, and has disappeared at a shear rate g* := 10, 
where the EV and no-EV curves coincide. The slope of  
AF' versus g* in this region is equal to 2.0 -4- 0.1. A result 
that is in accordance with theory i2 for this parameter and 
that also was observed in a previous work o f  ours 14, 
where excluded volume was not discussed. Figure 4b 
shows the other important  parameter in flow birefrin- 
gence studies, the extinction angle, presented in the form 
of tan2x. The value of  this parameter falls with 
increasing shear rate since this corresponds to a more 
pronounced orientation of the polymer chains in the flow 
field. However, it shows the same qualitative behaviour 
as AF',  with a significant EV-effect at low shear rates and 
disappearance of this effect at high shear. The slope of  
tan2x versus g* at high shear is the same as that for AF' 
(-2.0) ,  in accordance with theory i2. 

As mentioned in the Introduction, according to theory, 
the radius of  gyration for a Gaussian chain in the no-EV, 
no-HI-case depends on the number of  beads N to the 
power of  4 and on the shear rate g to the second power. 
The theoretical expression for (S 2) can be put in the 
form: 6 = ( ( S  2) - ( 3 2 ) ) / ( S  2) o( N4g  2. Thus, if we make 
a log log plot of 6 versus N we should get an exponent 
equal to 4. In Figure 5a is shown our simulation results 
for 6 versus N for three different values of the shear rate, 
and with EV and HI included. We observe a shear rate 
dependence with a stronger influence of the number of 
beads in the chain (N) as the shear rate is increased. In 
Figure 5b we have plotted the value of  the exponent over 
3 decades of  the shear rate. For  the case without excluded 
volume and hydrodynamic interaction we obtain an 
exponent equal to 4.0 + 0.2, in accordance with theory. 
When excluded volume and hydrodynamic interaction 
are taken into account, we obtain the same exponent for 
high values of the shear rate, corresponding to the 
disappearance of these two effects. However, for lower 
shear rates the exponent is found to be smaller, a result 
that indicates that for a real system, at shear rates low 
enough for excluded volume and hydrodynamic interac- 
tion to still have effect, the chain dimensions are less 
dependent on the molecular weight (i.e. number of 
beads) than in the more idealized no-EV, no-HI system. 
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(a) Reduced radius of  gyration, ~ = ((32) - ( 3 2 ) ) / ( 3 2 ) ,  
versus number  of  beads in the chain, N, for Gaussian chains at three 
different shear rates. The results shown are with HI included. (b) Value 
of  exponent in the relation between 6 (reduced radius of  gyration) and 
N (number of  beads in chain) versus dimensionless shear rate for 
Gaussian chains. Two cases are shown: without EV and without HI 
(no-EV, no-HI); with EV and with HI (EV, HI) 

CONCLUSION 

The use of  the new type of 'soft-potential' proposed by 
Rey et al. 2'3 for describing the excluded volume effect in a 
flexible polymer chain has made possible the simulation 
study of the behaviour of the chain in steady shear, 
taking into account both excluded volume and hydro- 
dynamic interaction at the same time. The validity of the 
approach has been checked comparing the results for the 
mean square radius of  gyration and the mean square 
end-end  distance at equilibrium with theoretical predic- 
tions, and the simulation results obtained for the 
parameters studied are generally in agreement with 
what one would expect from a qualitative discussion of 
the way excluded volume and hydrodynamic interaction 
influence the chain properties. There is however a 
discrepancy between the results obtained for the intrinsic 
viscosity at high shear (shear thickening) and what is 
found experimentally for flexible chains, indicating that 
further refinement of the interactions within the polymer 
chain is needed. 
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